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Abstract. Non-dispersive transient currents in non-homogeneous films with a single discrete 
trap level have been calculated, the non-homogeneity consisting in spatial variations of trap 
depths or the presence of constant built-in electric fields in the limit cases of shallow 
and deep traps. Both kinds of spatial non-homogeneity may result in identical shapes of 
transients. Methods for determination of the spatial variations of trap depth and internal 
built-in electric field on the basis of experimental data are discussed. 

1. Introduction 

In recent years, non-homogeneous thin film structures of low-conductivity materials 
have become of increasing experimental and theoretical interest (Grung 1981, Chat- 
terjee andMarshak 1983, Klose eta1 1983). By applying a suitable preparation procedure 
(e.g. various epitaxial technologies, ion implantation and high-dose irradiation) it is 
possible to produce thin layers with a complicated position-dependent change in the 
band gap or layers with a very intricate shape (spatial and energetic) of localised states 
(Henniger and Keiper 1985, Osinskii et al1985). Variations in these physical parameters 
across the layer affect the dynamics and distribution of charge carriers and must be taken 
into account when analysing the form of the transient currents. It has been shown 
experimentally that the spatial variations of the trap density have a pronounced effect 
on transient currents (Thomas et a1 1968, Silnish 1970, Brodribb et a1 1975, SamoC and 
Zboinski 1978). This case of a layer non-homogeneity has been described analytically 
by Rybicki and Chybicki (1989). In the present paper we deal with some spatial variations 
of discrete trap depth and the internal quasi-electric field which is assumed to be caused 
by the band-gap gradient only. Calculations are based on the conventional concepts of 
the multiple-trapping model for homogeneous layers (Zanio et a1 1968, Schmidlin 1977, 
Noolandi 1977, Arkchipov and Rudenko 1982, Rudenko and Arkchipov 1982a, b, 
Baginskii and Kostsov 1985a, b). We give formulae for determining the spatialvariations 
of the trap depths and internal built-in field from current-time characteristics. 

2. General formulation 

In the case of small-signal monopolar injection into a thin non-homogeneous insulating 
layer, the continuity equations for the concentration n(x ,  t )  of the free charge and the 
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concentration nt(x, t) of the trapped charge, assuming multiple-trapping band transport, 
may be written as follows (Zanio et aZl968): 

an(x, t)/at = -(a/dx) [pE(x)n(x, t)] - an&, t)/at (1) 

ant(x, t)/at = n(x, t)/z(x) - nt(x, t)/rd(x) (2) 

n(x, 0) = no+) (3) 

n,(x, 0) = 0 (4) 

with initial conditions 

and 

where p is the microscopic mobility, t the time ( t aO) ,  x the spatial coordinate 
(0 s x s L ) ,  L the layer thickness, E(x) the x-dependent electric field, t(x) the x- 
dependent average trapping time, rd(x) the x-dependent average detrapping time, 6(x) 
the Dirac function and no the surface density of the injected charge. E(x), z(x) and td(X) 
are assumed to be time independent. In equation (1) the diffusion term as usual has been 
neglected, and in equation (2) a low trap occupation has been assumed. Equations (1)- 
(4) may be solved with the aid of the Laplace transform technique. The Laplace time- 
transform r ? ( ~ ,  s) of the free-charge concentration n(x, t) is 

where e(x) is the unit-step function. Inverting the Laplace transform ( 5 )  and substituting 
the resultant free-carrier concentration n(x, t) into 

L 

j(t) = 1 E(x)n(x, t) dx  (6) 
0 

where q is the elementary charge, one gets the current j(t) induced in the external circuit. 
In the following we shall discuss transient currents in non-homogeneous layers for pure 
cases of x-dependent trap depths and an x-dependent internal electrical field. 

3. Spatial variations of the trap depths 

3.1. Equations for transient currents 

In the case of spatial variations of the depth %(x) of a single locally discrete trap level, 
the x-dependent average detrapping time zd(x) is given by 

zd(x) = [l/v(x)l exP[%(x)/kTl (7) 
where v(x) is anx-dependent frequency factor, given by the number of phonons absorbed 
per second by a trapped carrier multiplied by the probability of transition to the con- 
duction band, k the Boltzmann constant and T the temperature. The x-dependent 
trapping time z(x) assumes the explicit form 

z(x> = [Noa(x)Uthl-l (8) 
where No is the x-independent trap concentration, Uth the thermal velocity and a(x) 
the x-dependent trapping cross section. The electric field is assumed to be position 
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independent and equal to the applied external field Eo = V / L ,  where V is the applied 
voltage. In such a case, ( 5 )  simplifies to 

and may be immediately inverted in the two limit cases of shallow and deep traps. 
Assuming S t d ( X )  4 1 for shallow traps (the formal condition st&) 4 1 being further 
referred to as the shallow-trapping case, even if it is fulfilled for somewhat deeper traps) , 
one gets 

which on substitution into equation (6) for the electric current induced in the external 
circuit leads to 

where x*(t)  is the solution of 

and is the actual position of the centroid of the drifting carriers. 
In the limit case of deep trapping, i.e. for s td (x )  + 1 for all x-values, the traps act as 

absorbing centres, and the currents will be influenced only through the variations in the 
trapping cross section a(x) ,  which enters t ( x )  according to (8). In particular, for deep 
traps the free-carrier concentration is 

Substituting (13) into (6) with E(x)  = Eo = constant, one gets 

3.2. Comparison of the analytical results with Monte Carlo simulation and discussion 

The expressions for transient currents (equations ( l l ) ,  (12) and equation (14)) have 
been obtained for two limit cases of shallow and deep trapping, respectively. The 
concentrations n(x ,  t )  of free carriers (equations (10) and (13)) are &like in those limits, 
which seems to be a very radical simplification. Thus the approximate results ( l l ) ,  (12) 
and (14) have been compared with the exact solutions obtained with the aid of Monte 
Carlo simulation. The algorithm applied was similar to that described by Rybicki and 
Chybicki (1988) , extended by taking into account the x dependence of the detrapping 
time zd(x)  originating from spatial dependence of the trap depth %(x).  Illustrative 
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Figure 1. Shallow-trapping (st&) 1) transient currents for x-dependent trap depths 
% ( x )  = go + a x  (L = lo-* cm; v o  = 10l2 s-'; to = s): curve A, E o  = 10 k T ,  
(Y = 0; curve B,  = 10 k T ,  a = -0.2 X lo3 kTcm-I; curve C ,  go = 8 k T ,  a = 0.2 X 

lo3 kTcm-'; curve D, go = 12 kT, a = -0.4 x lo3 kTcm-I; curve E, z0 = 8 kT, a = 0.4 X 
lo3 kTcm-'; -, Monte Carlo simulation; ---, approximate equations (ll), (12). 

s; to = 

shallow-trapping transients in figure 1 have been calculated for the linear dependence 
%(x)  = Z0 4 ax, a > 0. For simplicity, the parameters v ( x )  and u(x)  are assumed to be 
xindependent, i.e. v(x) = v o  = constant and o(x)  = uo = constant. The full curves show 
the results obtained from the Monte Carlo simulation, and the broken curves correspond 
to the approximate equations (ll), (12). The effective time teff of flight (position of the 
vertical fall in the current) is given by 

In particular, for the linear x dependence of trap depths assumed in figure 1, 

teff = (L/pEo){l + [ex~(%o)/votoaLI [exp(@L) - 11) (16) 
where t o  = (NOuo~,h)-l. As seen, the approximate formulae agree perfectly with the 
Monte Carlo simulation. In the case of deep trapping, equation (14) also satisfactorily 
agrees with the simulation. Thus, it is possible to use the analytical results in the previous 
section for determining the spatial variations of the trap depths from transient currents 

In the case of shallow trapping and x-independent parameters v o  and uo, one gets 
i(t). 

the trap depth in the actual position of drifting carrier packet % ( x * ( t ) )  from (11) as 

. e ( X * ( t ) )  = kTlnbo~o[io/ i ( t )  - 11) (17) 

where j o  = qnopEo/L and j ( t )  is the measured current. In a more general case of x- 
dependent v ( x )  and u ( ~ ) ,  by inserting the explicit dependences of v and u on the trap 
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depth %(x) into equation ( l l ) ,  one gets an algebraic equation from which one can 
calculate the trap depth 8(x*(t)) in the actual position of the drifting charge centroid on 
the basis of the measured j(t). The centroid position x*(t) may be found by measuring 
additionally the time dependence of the charge Q(t) induced on the layer contacts and 
making use of the Ram0 (1939) theorem: 

Q<t> = qnox*(t)/L. (18) 
This completes the determination of 8(x). 

In the case of deep trapping and x-independent U the shape of the transient current 
does not depend on spatial variations of the trap depth which act simply as absorption 
centres. If the trapping cross section depends on the trap depth, i.e. a(x) = a('E:(x)), 
one can easily obtain t(pE,t) from (14): 

t W o t )  = -{[l/j(t)I [d j ( t ) /dW'  (19) 
and then, from (€9, a(pEot) = a(x) = a(%(x)) up to the factor No. In this way the 
functional shape of %(x) can be estimated if only a reliable dependence of U on 'E: is 
assumed. For deep trapping in the considered sense the effective time of flight is simply 

In the cases of both shallow and deep traps the microscopic mobility p is assumed to 
teff = L/PEo. 

be known. 

4. Built-in constant electric fields 

4.1. Equations for transient currents 

Because of the presence of a time-independent built-in electric field AE(x), due for 
example to the spatial variations in the band gap, the total electric field E(x) causing the 
free-carrier drift is 

E(x) = Eo + AE(x). (20) 
Assuming the trap depth8 to be position independent, i.e. %(x) = z0 = constant (conse- 
quently v ( x )  = v o  = constant and a(x) = oo = constant), the Laplace transform ri(x, s) 
of the free-charge concentration n(x, t) is 

where t d o  = (l /vo) exp(s0/kT) and to = (Noaouth>-'. Inverting (21) in the limit of 
shallow trapping (srd < l ) ,  one gets 

and, with the aid of (6), 

j(O = (qno/L)W[x*(t)l /( l  + ZdO/rO>> (23) 
where the actual position x*(t) of the drifting packet is the solution of 

t = loX -& (1 + 2) 
In the limit case of deep trapping (Std 1) the free-carrier concentration is 
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Figure 2. Shallow-trapping ( s t d ( x )  4 1) transient currents for x-dependent built-in electric 

= 0.25 x lo3 V m-', y = 
-0.25 x lo5 Vcm-2; curve C ,  p = OVm-I, y = 0.5 x 105Vcm-2; curve D, p = 0.5 X 
103 V cm-', y = -0.5 x IO5 V cm-2; -, Monte Carlo simulation; ---, approximate 
equations (23), (24). 

field AE(x)  = p + yx ( L  = cm; Eo = lo3 V cm-I; V g  = 1Ol2 S - ' ;  t o  = 10-"S; to = 
s): curve A, /3 = 0 V m-I, y = 0.25 x lo5 V cm-2; curve B, 

and thus, from (6), 

where 

relates time t with the actual position x * ( t )  of the drifting carrier packet. 

4.2. Comparison ofthe analytical results with the Monte Carlo simulation and discussion 

In a similar way to Q 3.2, we first compare the simplified analytical results with the Monte 
Carlo simulation. Illustrative shallow-trapping transients have been calculated for a 
linear x dependence of built-in electric field AE(x)  = /3 f yx, y > 0, corresponding to 
parabolic spatial changes of the band gap, for v (x )  = v o  = constant and a(x) = a. = 
constant (figure 2). The full curves correspond to Monte Carlo simulation, performed 
according to the algorithm modified to allow for x dependence of the band drift velocity 
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pE(x), while the broken curves correspond to the approximate solutions (23), (24). The 
effective time teff of flight is given by 

and thus, for AE(x)  assumed in figure 2, 

Also in the case of deep trapping, equations (26), (27) recover the results of the Monte 
Carlo simulation despite the final portion of the current. Thus, the approximate formulae 
(23), (24) and (26), (27) should be accurate enough to estimate the internal built-in 
electric fields. 

In the case of shallow trapping and x-independent parameters v and 0, one immedi- 
ately gets E(x*( t ) )  from (23), and, in a similar way to 0 3.2, by using the Ram0 theorem, 
one completes the determination of E(x) .  

In the case of deep trapping, from (26), (27) one gets 

E(x*(t))  = [j(W/qnoPl exp(t/to) (30) 
which, together with (18), gives E@). 

5. Concluding remarks 

In the previous paper (Rybicki and Chybicki 1989, section 2) we have described the 
influence of the spatial non-homogeneity of the trap concentration on non-dispersive 
transient currents flowing under the action of the uniform field Eo = V / L ,  the traps 
being at x-independent depths. In the present paper we have discussed two other types 
of layer non-homogeneity: uniformly distributed traps of x-dependent depths (section 
3) and uniformly distributed constant-depth traps in a layer with a non-uniform band 
structure (section 4). The analytical solution of the transport equations is possible 
because the diffusion term is neglected, and the description of current-time charac- 
teristics is especially simple in the two limit cases of shallow and deep trapping. The final 
formulae are suitable for determination of the non-homogeneity parameters. The shapes 
of transient currents obtained within all three non-homogeneity models are visually 
similar and do not have any features specific to a particular kind of the considered non- 
homogeneity (cf figures 1 and 3 of Rybicki and Chybicki (1989) with figures 1 and 2 of 
the present paper). A single transient current different from a typical rectangular type 
may be interpreted within all three types of non-homogeneity, i.e. the shape of such a 
characteristic may be explained by a spatial non-homogeneity of trap density, by a spatial 
non-homogeneity of trap depths or by the presence of internal built-in fields. Thus, in 
order to choose the proper interpretation, measurements at different temperatures and 
different external fields are necessary. When the experimental data are misinterpreted, 
the absolute values of the internal parameters describing the layer non-homogeneity 
depend on external conditions (temperature and applied field). On the other hand, if 
only the non-homogeneity model chosen for the data interpretation corresponds to the 
real situation in the layer, the absolute values of the parameters describing the non- 
homogeneity are temperature and field independent, at least if the field dependences of 
parameters such as p,  0 and t d  and the temperature dependences of p ,  %o and No are 
neglected. 
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Thus, apart from showing the remarkable influence of the layer non-homogeneity 
on transient currents, we hope that the paper provides some formulae useful for the 
experimentalist to interpret his data. 
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